Preliminary Studies to Characterize the Temporal Variation of Micronutrient Composition of the Above Ground Organs of Maize and Correlated Uptake Rates
نویسندگان
چکیده
The improvement of agronomic practices and the use of high technology in field crops contributes for significant increases in maize productivity, and may have altered the dynamics of nutrient uptake and partition by the plant. Official recommendations for fertilizer applications to the maize crop in Brazil and in many countries are based on critical soil nutrient contents and are relatively outdated. Since the factors that interact in an agricultural production system are dynamic, mathematical modeling of the growth process turns out to be an appropriate tool for these studies. Agricultural modeling can expand our knowledge about the interactions prevailing in the soil-plant-atmosphere system. The objective of this study is to propose a methodology for characterizing the micronutrient composition of different organs and their extraction, and export during maize crop development, based on modeling nutrient uptake, crop potential evapotranspiration and micronutrient partitioning in the plant, considering the production environment. This preliminary characterization study (experimental growth analysis) considers the temporal variation of the micronutrient uptake rate in the aboveground organs, which defines crop needs and the critical nutrient content of the soil solution. The methodology allowed verifying that, initially, the highest fraction of dry matter, among aboveground organs, was assigned to the leaves. After the R1 growth stage, the largest part of dry matter was partitioned to the stalk, which in this growth stage is the main storage organ of the maize plant. During the reproductive phase, the highest fraction of dry matter was conferred to the reproductive organs, due to the high demand for carbohydrates for grain filling. The micronutrient (B, Cu, Fe, Mn, and Zn) content follows a power model, with higher values for the initial growth stages of development and leveling off to minimum values at the R6 growth stage. The proposed model allows to verify that fertilizer recommendations should be related to the temporal variability of micronutrient absorption rates, in contrast to the classic recommendation based on the critical soil micronutrient content. The maximum micronutrient absorption rates occur between the reproductive R4 and R5 growth stages. These evaluations allowed to predict the maximum micronutrient requirements, considered equal to respective stalk sap concentrations.
منابع مشابه
Yield and nitrogen leaching in maize field under different nitrogen rates and partial root drying irrigation
Irrigation water is limiting for crop production in arid and semi-arid areas. Furthermore, excess nitrogen (N) application is a source of groundwater contamination. Partial root drying irrigation (PRD) can be used as water saving technique and a controlling measure of groundwater N contamination. The objectives of this investigation were to evaluate the effect of ordinary furrow irrigation (OFI...
متن کاملImpact of spatial-temporal variations of climatic variables on summer maize yield in North China Plain
Summer maize (Zea mays L.) is one of the dominant crops in the North China Plain (NCP). Its growth is greatly influenced by the spatial-temporal variation of climatic variables, especially solar radiation, temperature and rainfall. The WOFOST (version 7.1) model was applied to evaluate the impact of climatic variability on summer maize yields using historical meteorological data from 1961 to 20...
متن کاملSpatio-temporal variation of wheat and silage maize water requirement using CGMS model
The Crop Growth Monitoring System (CGMS) has been applied for spatial biophysical resource analysis of Borkhar & Meymeh district in Esfahan province, Iran. The potentially suitable area for agriculture in the district has been divided into 128 homogeneous land units in terms of soil (physical characteristics), weather and administrative unit. Crop parameters required in the WOFOST simulatio...
متن کاملThe influence of iron chelate and zinc sulfate on the growth and nutrient composition of chickpea grown on a calcareous soil
ABSTRACT- The effects of iron (Fe) and zinc (Zn) treatments on the growth and nutrient composition of chickpea were studied in a greenhouse experiment arranged in a completely randomized design. While the application of Fe decreased mean shoot dry weight of chickpea, that of Zn had no significant effect on chickpea shoot dry weight. Increasing Fe levels drastically decreased Mn concentration an...
متن کاملAgronomic and physiological assessment of nitrogen use, uptake and acquisition in sunflower
A field experiment was conducted to study the effects of N fertilization on uptake,accumulation/remobilization, use efficiency and yield of sunflower grown in alluvial plains ofnorthwestern India comprising four hybrids (PSH 996, PAC 3789, PSH 569 and SH 3322)and five N levels (Control, 40, 80, 100 and 120 kg N ha-1) in split-plot design with threereplications. Increased N fertilizer rates sign...
متن کامل